В первой половине XX в. была предпринята попытка целиком свести значение теоретического термина к его возможностям измерения и тем самым избежать каких-либо неясностей, связанных с его точным значением, и трудностей его эмпирической интерпретации. Такой подход был предпринят американским физиком П. И. Бриджменом и в дальнейшем получил название операционализма. Так, например, понятие «температура» должно быть сведено к комплексу соответствующих измерительных операций. Однако вскоре операционализм был признан ошибочной концепцией. Ведь получается, что, например, должно быть столько различных температур, сколько есть различных способов ее измерения. Кроме того, само измерение выглядит интуитивно понятной операцией лишь в очень простых случаях; гораздо чаще оно требует теоретической поддержки, т.е. само обретает смысл только внутри концептуального контекста. Но если не впадать в крайности, подобные операционалистской точке
зрения, то правила связи эмпирического и теоретического уровней действительно играют важнейшую роль в научном продвижении. Например, при становлении квантовой теории важную роль сыграл введенный В. Гейзенбергом принцип наблюдаемости, согласно которому теория должна включать только такие конструкты, которые относятся к принципиально наблюдаемым явлениям. Принцип наблюдаемости активно обсуждался в методологической литературе. Дело в том, что, с одной стороны, он действительно отражает фундаментальное общеметодологическое требование — требование привязки теоретических конструктов к эмпирическому материалу, с другой — формулировка этого принципа явно нуждалась в дальнейшем уточнении.
Вероятно, ближайшим уточнением принципа наблюдаемости можно было бы считать то требование, что всякий вводимый неэмпирический конструкт А должен иметь хотя бы одну частичную эмпирическую интерпретацию (т.е. запрет на абсолютно неинтерпретируемые термины). Но и это требование оставляет дальнейшие вопросы. Здесь достаточно указать на следующие трудности:
1) говоря об эмпирической интерпретации, мы, как правило, надеемся на прямую операционализацию термина. Но в сложных познавательных ситуациях термин может получать эмпирическую интерпретацию и весьма косвенным способом — посредством характеризации через отношения с другими наблюдаемыми величинами, причем он сам остается непосредственно неизмеряемым;
2) для продвижения науки полный запрет на введение непроинтерпрети-
рованных сущностей разрушителен, ведь в реальной научной практике часто приходится довольно долго ждать адекватной интерпретации, в то время как термин уже введен и в полную силу работает на высших теоретических уровнях.
Таким образом, проблема нахождения правил соответствия, или опе-рационализации теоретического понятия, остается открытой и подлежащей каждый раз конкретному содержательному рассмотрению.
Этот же момент подчеркивает и К. Гемпель в своем решении дилеммы теоретика. Он указывает, что целью теории нельзя считать только систематизацию, установление взаимосвязей между эмпирическими явлениями. Ученый должен иметь возможность расширять и совершенствовать теорию, использовать мощные объяснительные средства, которые станут и в будущем руководить его поисками. Именно теоретические понятия, в настоящий момент недостаточно связанные с опытом, являются проводником новых исследований, корректировки теории, обнаружения новых взаимосвязей. Кроме того, не следует забывать и о том, что сами возможности наблюдаемости изменчивы, относительны; ведь часто получается так, что ненаблюдаемое вчера становится сегодня наблюдаемым, получает блестящее эмпирическое подтверждение. Это означает, что теоретические понятия являются как бы авангардом теории, обладающим некоторой независимостью относительно имеющегося эмпирического базиса. Они выходят за его рамки, опережают возможности непосредственного опытного подтверждения, словно являясь векторами научного поиска, направленными в будущее, к новым исследованиям. Введение теоретических понятий дает научной теории своеобразный «аванс», за счет которого она развивается, концептуально подпитывается и который может быть «оплачен» только на более поздней стадии развития науки, но только если программа, ведомая этими понятиями, приведет к положительным результатам.
Прежде всего необходимо было прояснить эмпирический фундамент. Какие утверждения являются абсолютной базой для наращивания научного знания? Это, видимо, такие утверждения, которые фиксируют то, что непосредственно наблюдается учеными независимо от их теоретических установок. Речь идет об утверждениях «твердого опыта», в которых репрезентируются данные о результатах измерений, о наблюдаемых событиях, о четко фиксируемых изменениях в ходе изучаемого процесса и т.п. Подобного рода утверждения ученый формулирует в своем протоколе во время проведения эксперимента или наблюдения. Эти суждения и были названы «протокольными предложениями». В них отражаются конкретные, локализованные в пространстве и времени, единичные факты (скажем, факт, что в момент времени tt давление газа в камере имело значение P). Однако дальнейшая разработка этой темы привела к существенным трудностям. Оказалось, что последовательное приведение научных утверждений к «протокольному» виду ведет к бессмыслице, т.к. в содержание эмпирических утверждений всегда входят теоретические компоненты. Эти компоненты выходят за пределы непосредственного опыта и служат его структурированию. Так, уже в приведенном выше примере можно выявить ряд скрытых теоретических и метафизических допущений. Скажем, для того чтобы иметь возможность зафиксировать момент времени tl,, нужно опираться на положения об измеряемости времени, об его однородности и равномерности, ввести также равномерную измерительную шкалу, которая предшествует проводимому опыту, а не является непосредственным опытным фактом.
Теория Гемпеля отличается узостью взглядов. Далеко не всегда научное объяснение представляет собой строгий дедуктивный вывод. Такое рассуждение играет ведущую роль лишь в физико-математических науках. Помимо дедуктивного вывода, в научной практике реально применяются и другие, недедуктивные рассуждения, в т.ч. и в точном естествознании. Используются вероятностные, приближенные выводы; так, в модельном объяснении используется рассуждение по аналогии. Кроме того, часто объяснение вообще имеет достаточно сложную структуру, которую невозможно охарактеризовать однозначно, т.к. она содержит в замысловатом переплетении и дедуктивные, и недедуктивные составляющие, а также некоторые различные взаимосвязи. В социальных
Необходимо отметить, что для более полного и всестороннего раскрытия особенностей и взаимосвязей изучаемого сложного явления различные виды объяснения используются совместно, дополняя и уточняя друг друга. В этом случае стараются раскрыть и историю данного явления, и его функциональное значение в той или иной системе, и структурные особенности, пытаются подвести его под какие-то ранее установленные общие закономерности, ищут действующие на него причинные факторы, т.е. применяют в комплексе, в той или иной пропорции генетическое, функциональное, структурное, помологическое и каузальное объяснения. Мы рассмотрели только основные виды объясняющих оснований. Однако реальная практика научного мышления ни в коей мере не исчерпывается ими ни в естественных, ни в социальных науках. Например, часто объяснение носит только предварительный характер, когда ссылаются не на закон или другие принятые утверждения, а на еще не получившую широкого признания гипотезу (и, кстати сказать, не всегда имеющую характер общего утверждения, а порой индивидуализированную, предназначенную специально для данною случая), такое объяснение можно назвать гипотетическим.
Часто весьма непросто произвести подведение под общий закон: требуется построение целых вспомогательных теорий промежуточного уровня, которые состыковываются с общими законами и конечным утверждением достаточно сложным образом. Существует и, например, такая трудность, как многозначность объяснения, когда одно и то же явление может быть дедуцировано из совершенно различных общих положений. В этом случае, помимо чисто дедуктивного рассуждения от общего к частному, научное мышление должно производить оценку тех или иных объяснений, выбирая из логически равноценных все же наиболее приемлемое, на основе каких-то дополнительных критериев. Наконец, можно ли вообще сводить любое объяснение к разновидности логического вывода? Таким образом, возникла необходимость расширить понятие объяснения. Так, концепция научного объяснения была далее развита Эрнестом Нагелем в книге «Структура науки» (1961). Он указывает, что, помимо указания на общий закон, существуют и другие паттерны научного объяснения (вероятностное, функциональное и др.)1. Появились и другие подходы к проблеме научного объяснения. Для того чтобы разобраться в многообразии видов научного объяснения, нужно различать два логических основания, которые, к сожалению,
Согласно К. Гемпелю и в естественных, и в социальных науках используется схема объяснения через общий закон. Научно объяснить какое-либо явление означает подвести его под общий закон, частным случаем которого оно и является. Базой такого научного объяснения выступают либо действительные научные законы из конкретных научных областей (скажем, законы оптики), либо, что характерно прежде всего для социальных наук, общие «законоподобные утверждения». Согласно К. Гемпелю объяснение по своей логической структуре представляет собой рассуждение от общего к частному. Подобного рода умозаключение принято называть дедуктивным. Поэтому общая схема объяснения, предложенная К. Гемпелем, получила название дедуктивно-помологической (от греч. nomos — «закон»). Позже К. Гемпель расширил схему объяснения, признав, что рассуждение может идти не только по типу строгого вывода от общего к частному, но могут использоваться и рассуждения, приводящие к лишь вероятному заключению. Поэтому схема объяснения была в конечном виде разделена на собственно дедуктивно-номологическую и индуктивно-вероятностную подмодели.
Некоторые современные философы науки утверждают, что само понятие закона является в настоящее время не совсем удачным. Оно отсылает нас к метафизике XVII-XVIII вв., когда под законом понималось нечто абсолютное, безусловное, присущее природе с логической необходимостью. Сегодня мы далеко отошли от такой метафизики. Так, например, говорит Б. ван Фраассен в книге «Законы и симметрия» (1989)’. Он поднимает ряд важных проблем, касающихся статуса законов в современной науке. Известная работа Нэнси Кэртрайт «Как лгут законы физики» (1983)2 вскрывает тот сложный контекст, в котором работают научные законы. Так, ученые вместе с научными законами вводят сильные идеализирующие допущения, заведомо упрощают ситуацию (в т.ч. отходят от
Кроме того, универсальность научного закона выражается в том, что, описывая сущностные аспекты того или иного явления, он относится непосредственно не столько к имеющим место явлениям, сколько к универсальным потенциальным ситуациям, которые могут реализоваться при выполнении соответствующих условий. Иными словами, закон как бы преодолевает сферу того, что актуально существует. Так, К. Поппер обращает внимание на такую особенность научных универсальных утверждений: они характеризуют потенциальный план реальности, объективную предрасположенность к тому или иному явлению при наличии соответствующих условий (такие утверждения называют диспозициями). Универсальные утверждения, играющие роль научных законов, являются, по К. Попперу, описаниями не столько реально наблюдаемых единичных явлений, сколько потенций, предрасположенностей1. Поскольку в законе должна фиксироваться именно сущностная универсальность, встает вопрос о том, как отличить подлинные законы от случайных обобщений, лишь по видимости имеющих законоподобную форму. (Например, утверждение «все яблоки в этом холодильнике красные» может оказаться истинным, не будучи научным законом.) В целом этот вопрос пока недостаточно прояснен. Но следует отметить важный вклад американского философа и логика Н. Гудмена. Он тоже обращает внимание на потенциальный характер законов. И. Гудмен называет в качестве специфического свойства научных законов то. что из них могут быть выведены условные (или контрфактические) предложения, т.е. те, которые описывают не фактическое положение дел, а то, что может или могло ‘бы произойти в определенных обстоятельствах. Например, «если бы не мешало трение, этот камень продолжал бы катиться дальше» — это условное высказывание, опирающееся на закон инерции. Напротив, те суждения, которые отражают лишь случайные свойства какого-либо объекта, не могут служить основанием для выведения из них контрфактических суждений".
С объективной стороны, т.е. со стороны референта теории, научным законом называют устойчивое, сущностное отношение между элементами реальности. Устойчивость отношения означает то, что данное отношение стабильно, повторяемо, воспроизводимо в данных неизменяемых условиях. Сущностность закона означает то, что отношение, описываемое законом, отражает не какие-то случайные, наугад схваченные свойства описываемых объектов, а наоборот, самые важные — те, которые определяют или структуру этих объектов, или характер их поведения (функционирования) и вообще тем или иным способом объясняют сущность изучаемого явления. Референт теории, включающей законы, — это не единичный объект, а некоторая (возможно, бесконечная) совокупность объектов, взятая под углом зрения универсальности; поэтому закон формулируется не для единичного явления, а относится к целому классу подобных объектов, объединенных в этот класс определенными свойствами. Таким образом, закон фиксирует существенные инвариантные соотношения, универсальные для той или иной предметной области.