С объективной стороны, т.е. со стороны референта теории, научным законом называют устойчивое, сущностное отношение между элементами реальности. Устойчивость отношения означает то, что данное отношение стабильно, повторяемо, воспроизводимо в данных неизменяемых условиях. Сущностность закона означает то, что отношение, описываемое законом, отражает не какие-то случайные, наугад схваченные свойства описываемых объектов, а наоборот, самые важные — те, которые определяют или структуру этих объектов, или характер их поведения (функционирования) и вообще тем или иным способом объясняют сущность изучаемого явления. Референт теории, включающей законы, — это не единичный объект, а некоторая (возможно, бесконечная) совокупность объектов, взятая под углом зрения универсальности; поэтому закон формулируется не для единичного явления, а относится к целому классу подобных объектов, объединенных в этот класс определенными свойствами. Таким образом, закон фиксирует существенные инвариантные соотношения, универсальные для той или иной предметной области.
Универсальность закона сама по себе является достаточно сложным качеством. Г.И. Рузавин говорит о трех смыслах универсальности. Первый смысл — универсальность, задаваемая самим характером понятий, входящих в закон. Разумеется, существуют различные уровни общности научных понятий. Поэтому и законы могут быть упорядочены по признаку общности как более универсальные (фундаментальные) и менее универсальные (производные). Второй смысл универсальности касается пространственно-временной общности. Утверждение является универсальным в этом смысле, если оно применяется к объектам независимо от их пространственного и временного положений. Поэтому геологические законы не могут быть названы универсальными в этом смысле, т.к. характеризуют именно земные явления. В этом случае можно говорить об универсальности более низкого уровня: региональной и даже локальной (или индивидуальной). Наконец, третий смысл связан с логической формой законоподоб-ных утверждений — с использованием в формулировке закона специального логического оператора, позволяющего высказываться о каком-либо «объекте вообще». Такой оператор называется квантором. В универсальных утверждениях используется либо квантор всеобщности (для всех объектов вида А имеет место…), либо квантор существования (существует некий объект вида А, для которою имеет место…). При этом законы более низкого уровня универсальности используют квантор существования, а законы фундаментальные — квантор всеобщности’.
Научный закон — важнейшая составляющая научного знания. Научный закон репрезентирует знание в предельно концентрированном виде. Однако не следует сводить цель научной деятельности вообще лишь к установлению научных законов, ведь есть и такие предметные области (прежде всего это касается гуманитарных наук), где научное знание производится и фиксируется в других формах (например, в виде описаний или классификаций). Кроме того, научное объяснение, как мы будем говорить дальше (§ 1.3), возможно не только на основе закона: существует целый спектр различных видов объяснений. Тем не менее именно научный закон в его лаконичной формулировке производит самое сильное впечатление и на самих ученых, и на широкие круги представителей вне-научной деятельности. Поэтому научный закон нередко выступает синонимом научного знания вообще. Закон входит в состав теории, в общий теоретический контекст. Это означает, что формулировка закона осуществляется в специальном языке той или иной научной дисциплины и опирается на базисные положения в виде совокупности тех условий, при которых закон выполняется. То есть закон, несмотря на свою краткую формулировку, является частью целой теории и не может быть вырван из своего теоретического контекста. Он не может быть приложен к практике непосредственно, без окружающей его теории, а также, как это часто бывает, требует для своих приложений наличия определенных промежуточных теорий, или «теорий среднего уровня». Иными словами, научный закон не является непосредственным продуктом, всегда готовым к употреблению для любого пользователя.
Кроме того, понятия не обязательно должны появляться в научном обиходе как сразу максимально уточненные. История науки показывает, что неточные, предварительные понятия, фигурирующие на первых порах становления какой-то научной концепции, тоже стимулируют научное продвижение. Улучшение общего уровня знаний в какой-либо научной области и успех в уточнении первоначального понятия — это две стороны одного и того же процесса. Но даже при успешном продвижении остаются специфические проблемы, связанные с логическими свойствами научных понятий. Так, не стоит рассчитывать, что возможно добиться предельно ясного и полного определения в отношении любого научного понятия, особенно если это касается т.н. теоретических терминов. Проблема точного содержания теоретических терминов достаточно сложна, она будет подробнее рассмотрена в § 1.4. Как подчеркивает Р. Карнап, для теоретических терминов вообще не могут быть сформулированы такие же удовлетворительные определения, как для терминов более эмпирического, наблюдаемого плана. Их определение через наблюдаемые характеристики может быть только частичным.
В естественных науках формирование понятия подчиняется важнейшему требованию операционализации. Операционализация понятия состоит в выяснении и уточнении того, какими способами возможно оперировать данным понятием и той сущностью, которая предполагается этим понятием: проверить ее наличие, измерить или определить ее градации и степени, выяснить ее отношения с другими сущностями. Историческим примером здесь может служить достижение Дж. Дальтона. Гипотеза атомного строения вещества была в ходу и до него, однако лишь Дальтон смог операционализировать понятие «атом», связав его с понятием атомного веса и введя в науку процедуру измерения последнего. Общей тенденцией естествознания является избавление от неоперационализи-руемых, т.е. от неэффективных, понятий. Требование операционализа-ции известно в разных вариантах, например как «принцип наблюдаемости», сформулированный В. Гейзенбергом. В ряде гуманитарных наук (в тех направлениях, которые используют соответствующие рационализирующие стратегии) требование операционализации тоже является
Научные понятия часто приходят в науку из повседневности (как, например, в физике: сила, работа и т.п.). Однако в научном контексте они приобретают специфический и уточненный смысл. Формирование понятий в науке является не произвольным процессом, а целенаправленной деятельностью, которая должна привести к получению полноценного научного понятия. В отличие от ненаучного употребления понятий, при котором обычно довольствуются тем минимумом содержания, которое достаточно для взаимного понимания собеседников, в науке при формировании понятия стараются зафиксировать наиболее существенные, важнейшие свойства, отношения и закономерные связи изучаемого предмета. В ходе научного познания ученые улучшают свои знания о том, что же является наиболее существенным в том или ином явлении. Поэтому представляется возможным судить о том, насколько плодотворным и полезным оказалось введение того или иного понятия. Иными словами, научная практика выступает критерием правильности научных понятий.
Содержание — это смысловая сторона понятия. Содержание — это то, что понимается участниками речевого взаимодействия при использовании того или иного понятия. Но что значит понимать ? Этот вопрос относится к числу нелегких в философии, и на него отвечают разными способами. Главным здесь является следующее: если в коммуникативном взаимодействии человек понимает какое-то понятие, то достигаемое им понимание может быть каким-либо образом реализовано дальше. Например, человек может перечислить ту совокупность признаков, которыми он пользуется для выделения предмета, обозначаемого понятием, или, не зная четко всей совокупности признаков, он может назвать хотя бы часть из них, а также дальше уточнять их (эксплицировать), или может назвать те условия, при которых предложение, содержащее данное понятие, оказывается истинным, или хотя бы (это минимальное требование) умеет правильно употреблять данное понятие в речевой практике.
Как известно, научное знание содержит весьма специфические структуры. Оно включает в себя определенную совокупность концептуальных конструктов и взаимоотношений между ними. В данной главе мы рассмотрим ряд основных структур научного знания, таких как понятие, закон и объяснительные схемы, а также проанализируем принятое в науке разделение научного познания на эмпирический и теоретический уровни. Понятие — это минимальная логическая форма представления знаний. Традиционная логика отводит понятиям важное место в мышлении. Конечно, не только наука пользуется понятиями, но именно в научной деятельности понятия приобретают предельно уточненный и строгий вид.
То, что научный метод не является алгоритмом и не гарантирует в общем случае однозначного достижения поставленной цели, делает научную деятельность принципиально открытой для новых подходов и методологических проектов, корректируемой и самосовершенствующейся. Вообще по своему действительному содержанию научная деятельность весьма сложна. Так, в ее круг входят и различные процедуры обоснования и проверки теоретических положений (включая и использование различных метафизических, эстетических и других критериев), и разнообразные формы аргументации, убеждения, критики и защиты от критики, и разработка исследовательских приборов и инструментов, и решение специфических проблем наблюдения и экспериментирования, и выдвижение далеко идущих гипотез, и многое другое. Кроме того, важно то, что компоненты научной деятельности претерпевают изменения в реальном историческом времени. Меняются ее метафизические допущения, правила аргументации, стандарты строгости, те или иные методологические принципы. Это означает, что невозможно построить единую картину «науки вообще», которая оставалась бы постоянной на основе неизменного научного метода.
Под научным методом принято понимать систему приемов и регулятивных принципов, руководящую научным познанием и обеспечивающую получение научного знания. Система научно-познавательных методов включает в себя достаточно разнородное семейство методологических форм: здесь и регулятивы, и определенные устоявшиеся методы, и алгоритмы (которые в конкретных науках обычно приобретают вид методик), и различные общие подходы. Описать единый научный метод однозначно, как унифицированную совокупность достаточно определенных предписаний, невозможно. Тем не менее подобного рода попытки неоднократно предпринимались. Так, в Новое время первыми (и во многом противоположными) были программы Ф. Бэкона и Р. Декарта. По Ф. Бэкону, наука — это регистрация фактов, восхождение от единичных данных к существенным генерализациям.
Программа — это совокупность однозначных действий, соответственно, описание программы есть совокупность однозначных предписаний. Те или иные программы могут входить в состав метода как его наиболее четко определенные части. Алгоритм — это тоже программа, но такая, которая неизбежно приводит к решению той или иной задачи; т.е. это заведомо успешная программа действий. Алгоритм — гарантированная программа. Метод же в общем случае, в отличие от алгоритма, не гарантирует достижения поставленной цели! Как отмечает логик А.А. Зиновьев, при описании метода исследования не предполагается, что он обязан дать однозначный положительный результат; один и тот же метод может быть использован в разных условиях для решения разных проблем, и наоборот, одна проблема может решаться разными методами. Подход — это менее разработанное в методологической литературе понятие. В целом подход представляет собой категорию более общую, чем метод. Ядро подхода составляют те или иные теоретические тезисы, допущения или понятия. Подход выступает теоретическим основанием для более конкретных методологических предписаний. При сравнении подхода и метода легко заметить следующее.